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We discuss a class of particle methods for diffusion problems with
small diffusivity, in which diftusion is modeled by random waik update
of the particle positions; each particle carries a point-value of the
problem’s initial data; and the numerical solution is obtained as a dis-
crete convolution of the particie data with an approximate d-function.
While it is widely believed that such a particle method fails to converge,
we prove that if the number of particles M and the degree of smoothing,
measured by the width ¢ of the approximate &-function, are coupled so
that (Me)~' -0 as M— o and €0, then the computed solution
ui,(x. t) converges to the solution v(x, ¢) of the diffusion equation in
the sense that £([u5,(x, t) — v(x, 1)|?) - 0. We also present numericai
results which illustrate the theory, and, in particular, show that the
method performs uniformly well in the limit that the diffusion coef-
ficient vanishes.  © 1993 Academic Press, Inc.

1. INTRODUCTION

It is widely believed that particle methods for diffusion
probiems in which the diffusion particles carry information
about the values of the solution function (rather than those
of its gradient) are doomed to failure because of statistical
error. In this paper, we show that this need not be true. We
show that by explicitly smoothing the computed solution,
and by suitably coupling the amount of smoothing to the
number of particles used, the statistical error can be made
arbitrarily small. These results are estabiished by analysis of
particle methods for the simple diffusion equation and are
illustrated by numerical experiments. While other numerical
methods are certainly more efficient at solving the simple
diffusion equation, this setting allows us to perform the
analysis that corrects a widespread misconception about a
class of particle methods, and in so doing to provide a new
tool which we believe will be important in the design of
efficient particle methods for realistic problems.

Random particle methods in general are useful computa-
tional tools for solving equations in which diffusion is, by
some measure, small and whose sclutions therefore have
steep gradients. Examples of such equations include convec-
tion-dominated convection-diffusion equations [6] and
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reaction-diffusion equations with rapid bistable kinetics
[5]. The attraction of particle methods in these settings is
that, unlike finite-difference or finite-element methods, they
do not introduce numerical diffusion which can dominate
the physical diffusion actually in the problem. Also, while
the performance of spectral methods typically degrades as
the diffusion coefficient becomes smaller [2], the perfor-
mance of particle methods is uniformty good for all small
diffusion coefficients (see [11] and Section 4 below).

In this paper, we consider a class of particle methods in
the context of the initial value problem for a simple diffusion
equation

vl = vaX' (1 }

b(x,0)=f(x) (2)

with diffusion coefficient v < 1. Of course, if this were the
real problem, the diffusion coefficient could be scaled to one
by adjusting the length and time scales. We study Eq. (1),
however, as 4 model for a more difficult equation, such as
a convection-dominated convection-diffusion equation, and
we imagine that some other part of the problem fixes the
length and time scales and that, with respect to those scales,
v is small.

Two major types of random particle methods for solving
Egs. (1)-(2) are function-transport methods, such as those
discussed in this paper, and gradient-transport methods.
These methods work as follows. A finite number of particles
is introduced at time ¢ = 0 at locations distributed within the
support of the initial data /. During each of a succession of
timesteps, each of these particles takes a random step from
its current position. This simulates the diffusion. Associated
with each particle is a point value of v (for a function-trans-
port method) or a point value of v, (for a gradient-transport
methaod}. These values are obtained from the initial data. At
any time t> 0, the particle locations and the transported
values are used to construct an approximation to v{-, ).
For the function-transport methods, this construction is
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done directly, and the approximation is given by an
expression of the form

u(‘r! I)= z M—pré(x_xp)! (3)
p=1

where « is the approximation to ¢, M is the number of par-
ticles used, f,, is the function value associated with particle
P, X, is the location of the pth particle at time 7, and ¢ is a
specified function which will be discussed below. For the
gradient-transport methods, an approximation of this form
is constructed for v.(-, ¢), and this is then integrated with
respect to x to obtain an approximation to o{ -, z).

Published work on random particle methods has focused
almost exclusively on the use and analysis of gradient-trans-
port methods (e.g., see [3, 7, 8, 13, 14] for applications and
[10-12] for analysis of such methods}. It is widely believed
that gradient-transport methods are superior to function-
transport methods. This belief is based on the following
reasoning: On the one hand, for the gradient-transport
method the spatial integration step smoothes the statistical
fluctuations which result from the random-walk model of
diffusion [3, 10]. On the other hand, for function-transport
methods there is no similar averaging of the fluctuations
and the following dilemma arises: If smoothing is not
explicitly built into the function-transport method through
the choice of the function ¢, that is, if ¢ 1s chosen to be the
delta function centered at the point x,, then the approxima-
tions # do not converge to v as the number of particles is
increased, In fact, the variance of the approximating
function is infinite. If a smooth function ¢ is used, then the
approximating functions ¥ may converge as the number of
particles increases, but the limiting function will not be the
solution v to the diffusion equation. In either case, the
function-transport method fails.

The purpose of this paper is to describe a class of func-
tion-transport methods in which the smoothing introduced
through the function ¢ is coupled to the spacing between
particles (roughly 1/M) in such a way that convergence to
the solution of the diffusion equations occurs. We refer to
coupled smoothing which leads to convergence as “optimal
smoothing.”

In Section 2 we introduce the methods. In Section 3, we
state and prove a convergence theorem for these methods.
In Section 4, we present computational resuits illustrating
our theoretical results. '

2. THE NUMERICAL METHOD

We consider the initial value problem Egs. (1(2) and
assume that the initial data f has support in the interval
[0, 1]. We introduce M particles at locations xg in this
interval. We assume that these locations are chosen so that

0 0 __ 1g..0 U]
x,<x,, forall p and we define h,=3(x, , —x,_,) (we
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take x) =0 and x%, , , = 1). With particle p we associate the
value /1, f, = h, f(x])). We discretize time into intervals of
length k. During each timestep, each particle takes a step »
chosen from a Gaussian distribution with mean zero and
variance 2vk. The random steps are chosen independently
for each particle. The random steps that a given particle
takes in different timesteps are also chosen independently of
one another. At time ¢ = nk, we have particles at locations

Xy=Xo b, e 4
for p=1,., M, where 5, #2 ., 05 are independent
Gaussian random variables with mean zero and variance
2vk. Alternatively, we can write

(5)

n__ 0
Xp=Xp + Hpo
where

My =Np s+ 1 (6)

is a Gaussian random variable with mean zero and variance
2vnk = 2vt. Define the function

11
¢B(X)=—*€
f

€

el

(7)

Note that ¢, is an approximate d-function and that

T #lx)dx=1 for all £>0. Using the function ¢,, we
define an approximate solution to the diffusion equation at
time 1 = #k by the relation

wh(x, k)= 3} h, foddx —x}). (8}

For fixed values of ¢ and M, this completely specifies the
method except for a prescription for choosing the initial
particle locations. We will see from the proof presented in
the next section that it suffices that these locations be chosen
in [0, 1]in such a way that h, < BM ~' as M — o0 for some
constant 8> (, and henceforth, we make the assumption
that such an inequality holds.

3. CONVERGENCE OF THE METHOD

In this section we investigate the convergence of the func-
tion u’,, defined by Eq. (8), to the solution v of Egs. (1)-(2).
The approximate solution u5, 1s, through its dependence on
xp, p=1,.., M, a function of Mn independent identically
distributed random variables #a.p=1.,Mj=1 ., nLet
E(w) denote the expected value of a random variable w with
respect to the Mn random variables 7. We will show that
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for any fixed r=nk>0, E(Ju,(x,1)—v(x, £)|*) vanishes
uniformly in x on any compact interval as ¢—0 and
M -» oo, provided e and M are coupled in such a way that
{Me)}~' - 0. In particular, this is the case il e = CM ~¢ for
some 0 << g < | and a constant C >0,

The following easily derived identity is ceniral to our
analysis:

E(luyylx, 1) = v(x, N|*)

= Var(us,(x, 1)) + { (%, 1)) = v(x, )% (9)

Here, Var(u},(x, 1)) denotes the variance of u,(x, t). We
will derive expressions for E(u%,(x, 1}) and Var(u',(x, 1))
and we will use these to show that both terms on the
right-hand side of Eq. (9) can be made to vanish.

From the definition of «%,(x,¢) in Eq.(8) and the
independence of the random variables on which it depends,
we find that

E(uy(x, 1)) =p§ h, fp E(@{x —x7)) (10)
and
Var(u', (x, 1)) Var(i (x} ¢c{x—x;))
‘Z ) Var(g,(x—x7)).  (11)

in order to estimate these expressions, we calculate the
expected value and variance of the function ¢,(x, t). The
calculanon of E(¢, (x x7)) is straightforward. Recall that
X, = ’C +¥,, where r is the initial position of particle p and
qp is a Gaussian random variable with mean zero and
variance 2vt. For the calculation of the expected value, we
setx' =x-— xg and suppress the subscript p on . Then

B((x —x}) = (@'~
= b

a0
J o~ ¥ e o~ n¥tdvn) dn.
— o

n))

—n¥iav
et ”d'?
nvi

(12)

1
_n,/4vt

Upon combining the exponents and completing the square,
we find that

1

— (I3
S+ e5/dvt (13

o — X Pvr 4 ety

E(g(x —x7)) =

dnve
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Define the function

1 3 . 2 1
G.(x, )= P S DL S 14
dnvt 1 +e2/avt (19
We have just shown:
LEMMA 1.
E(¢£(x(x;))=Gs(x_'x‘gs”k)' (15)

Note that G(x, t) is related to the Green’s function for
the diffusion equation:

Gx, 1)= g~ ¥, (16)
4mvt
In fact, for any x and ¢ >0,
im G (x, t)=Gix, t). {an
[

1n a calculation similar to that done to obtain Eq. (15), we
find that

1 1

E '_n2=—1{‘_______
(#.{x ‘xp)) £ n\/m

o~ U= P8y 52)} .

(18)

Using this, we calculate the variance of ¢,(x — x7}) to obtain:

LEMMa 2.

Var(g (x—xp))=¢~" {l !

T /8t 4¢?

e—zc'x—xg)zf(4v:+s2)}_ (19)

o~ 2x— Speav+ ah}

1 1
7 dvi + &°

Note that Var(¢,(x —x}))—> o0 as e—0. This is the
reason that function-transport methods for which
¢(x)=d{x)in Eq. (3) have infinite variance. We will see that
by coupling the approach of M to o with that of e to 0 in
the way mentioned before, we can avoid that problem with
our method.

Returning to our consideration of E(uf,(x, 1)), we see
from Eq. (10) and Lemma 1 that

M
Eu(x, )= Y hpf(x?,) G (x—x3, 1).

2m

We assume that the initial data f is bounded and
piccewise continuously differentiable. Then, the right-hand
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side of Eq (20) is a midpoint-rule approximation to
o fix')Gx—x, 1)dx', and, since h,<BM ™' it con-
verges lo thls mtegrai as M — oo for any value of ¢>0.
Hence,

=[ 1) G x-xnar. @)

lim  E(u,{x, 1))

M — oo

From this equation, and the fact that G (x—x',¢)—>
G(x— x’, t) uniformly on [0, 1] for any 1> 0, we find also
that

LEmMa 3.

j f(x') Glx — ', 1) dx".

lim lim E f
fm Jim, B )

=uv(x, ). (22)

We have used here our assumption that the support of f
is contained in [0, 1 ]. Equation (22) tells us that as the two
numerical parameters M and ¢ go to their respective limits,
the expected value of our approximate solution ', (x, 1)
converges to the solution of the initial value problem. We
note that there is no restriction imposed here on the order

in which the two limits are taken; for r > 0, we could equally -

well have let ¢ — O first, and then M - co.

As we discuss below, the other component of the expected
squared error, ie., Var(u,(x, 1)), vanishes only with
suitable coupling between the limiting processes M — oo
and e — 0. It suffices to take e = CM ~% for constants C >0
and 0 < g < 1. We now estimate the rare of convergence of
E{u’,,(x, t}) to v(x, t) under the assumption that ¢ = CM ~¥,
We write

[E(u5,(x, 1)) —v(x, 1)}?

= {ﬁ; h,f(x)) G

(x_xgs I)
[ Gux—x ) d
1]

+f1 (G lx—x', 1) — G{x—x", 1)) f(x') dx’} . {23)
0

The first pair of terms is the error in the midpoint-ruie
approximation to the integral of f{x') G (x—x', 1) over
[0, 1]. G(x—x', t) is smooth and bounded uniformly in ¢
and (x—-x) for any fixed ¢>0. Hence, provided f is
bounded and piecewise continuously differentiable,
this error is (M ~13. (If fe C*{0, 1]), then this error is
O(M ~2).) The difference G,(x — x’, 1} — G(x —x’, r} which
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appears in the second pair of terms in Eq. (23) can be
expressed

G lx—x,1)—G(x—x', 1)

1 —[x — x ¥ dve + ety

=
Jr(dve+e?)

x{l— 1+52/(4w)e52‘—*-r’rlf[(dvrnwﬂzﬂ}, (24)

For fixed >0, this difference vanishes exponentially fast
for large |x — x’| and for all ¢ > 0. For |x — x'| bounded, the
difference is O(e?). Thus, |[{(G(x—x, ) —G(x—x,1))
flx)dx' ) =0(e*)=0(M ") uniformly in x on any
bounded interval. (In fact, this term is O(&*) uniformiy for
all x for any o < 2.) From this and our estimate of the first
pair of terms in Eq. (23), we conclude that

[E@u(x, ) —v(x, 1)}2=[{O(M "} + O(M ~¥)}%. (25)
Therefore, we have established
LEMMA 4,
. oM —?) if 4>3
{E(ut (x, 1)) —v(x, 1}}? {O(M — if Z<i (26}

We note that if fe C3([0, 1]), then the O(M ') term in
Eq. (25) can be replaced by O(M ~?), and in Lemma 4
we would have {E(u(x, 1))~v(x, 1)}’=0(M ") for
O<g=<l

Now we turn to estimating Var(u5,(x, t)). Rearranging
the expression for Var(¢,(x — x,))in Lemma 2, we find that

Var(do(x - Xy =¢~Wix—x%,vize), (27
where
1 1 —2xY/(8ve + 1)
x, g ——— ’
v ) T /8vi+¢&?

\/3\?[4—8287

Byix/[(4vt + e1)(Bvr + &2)]
4vt + &7

x{lﬁa

Note that for any fixed vt >0 and &> 0, ¥(x, v; £) has its
maximum at x =0. Thus

(28)

J (. v1: £) Y0, m;—-{m WH} (29)
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For any fixed vz > 0, this in turn is bounded uniformly in e
by

1 1
Divth=— . {30
7. /8vi
Hence, we can write
Var(g(x—x7)) < De ', (31)

where D depends only on vt. Combining this with Eq. (11},
we find that

Var(us,(x, )< De™! g B f(x0). (32)
p=1

Since we assume that the initial locations of the particles are
distributed in [0, 1] in a roughly uniform manner so that
h, < BM ~', we can replace one of the factors #, in Eq. (32)
by BM ~' and we find that for bounded and piecewise
continuously differentiable initial data f,

1 1
Vartus,(x, ) <3 DIN3+0 (5 ) 69
where D= D{vt) and |-|, is the L, norm. We therefore
conclude:

LemMMA 5. If e=CM ~9 for some constant C>0 and
O0<g<l, then as M — o,

Var(u,(x, 1)) s# DIfI3+0 (M%) (34)
Thus, the variance of our approximation vanishes in the
limit M — oo, provided that the amcunt of smoothing in the
function ¢, is appropriately coupled to the initial spacing
between particles.
Putting together the results of Lemmas 4 and 5, we have
the following convergence theorem:

THEOREM. Suppose the initial data f for Egs. (1)-(2) is
bounded and piecewise continuously differentiable. If
e=CM ~7 for some constants C>0 and 0 < g < 1, then for
any t >, there exists positive constants C, and C, such that

E(Jus (x, ) —v(x, )}

<C, (35)

1
Ml“‘+ ¢, max(

1
e

Jfor M sufficiently large. The coefficients C, and C, depend
on vt, f, and x. The estimate is uniform in x on any compact
interval,
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We note that the timestep & plays no role in the theorem;
all that matters is the time t=nk. This follows from
Egs. (4)-(5). The random variable x}, has the same distribu-
tion whether it is obtained by taking » independent
Gaussian steps each with mean zero and variance 2vk as in
Eq. (4), or one Gaussian step of mean zero and variance 2v¢
as in Eq. (3).

4. COMPUTATIONAL EXAMPLES

In this section, we present results of numerical
experiments which iliustrate and extend the discussion of
the previous section. The function transport method was
applied to the initial value problem (1)-(2) with diffusion
coefficient v =0.001 for two different sets of initial data:

Problem 1.

for —Se<x<5o

N .
=) 36
Jix) {0 otherwise, (36)
where
Nox) = e
’ a./in
and ¢ =0.3.
Problem 2.
1 for —i<x<i
= 37
f(x) {0 otherwise. (37)

For each of these problems, a closed-form analytic solution
is available with which to compare the numerical solution.

In Figs. | and 2, we illustrate the shortcomings of the
“decoupled” function transport methed in which either M
or £ is fixed while the other parameter goes to its natural
limit. Figure 1 shows the resuit of applying the function-
transport method to Problem 1 with the number of particles
M fixed at 2000 and with £ made progressively smaller. In
each frame, we show, for ¢ = 10.0, the exact solution (dashed
curve), and one or more numerical solutions computed
from Eq. (8} (solid curves). The values of ¢ used to produce
these results were ¢ =0.2, 0.1, 0.05, and 0.01 for curves (A),
(B}, (C), and (D), respectively. The sharp increase in the
variation of the numerical solution is evident. In Fig. 2, we
depict the results of fixing ¢=0.6 and allowing M to
increase. We show, at #=10.0, the exact solution {(dashed
curve) and numerical solutions obtained with M = 2000
(solid curve (A)) and M = 32000 {solid curve (B). There is
little difference in the numerical solution obtained with
these values M, and even less difference between the numeri-
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uidx, t) (solid curves) at r=10.0 are shown for (A) e =02, (B) e =0.1, (C) £ =0.05, and (D} e =001.

cal solution obtained with M = 32000 and M = 64000 (not
shown), so it is fair to say that the numerical solution
shown in curve (B} has converged. However, it has clearly
converged to something far from the true solution.

Figures 3 and 4 depict results, again at t = 10.0, for the
case in which M and ¢ are coupled through the relation
e¢=CM 7 with C= 1 and g =0.2. (This value of g balances
the rates at which the two terms in the bound ({35) approach
_zero.) In Fig. 3, we show numerical solutions (solid curves)
obtained from Eq. (8} for Af= 2000, 8000, 32000, and
128000, and for a particular realization of the particle
random walks. Ailso shown is the exact solution (dashed
curve). In Fig. 4, we compare the average behavior of the
method with ¢ = M ~%? to the true solution. The solid curves
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FIG. 2. Behavior of the function-transport method for Problem 1 with
¢ fixed at 0.6. Exact solution #(x, ¢) (dashed curve) and numerical solution
wS(x, 1) (solid curves} at t=100 are shown for (A) M=2000 and
(B) M =32000.

show E(u",(x, 1)} + {Var(u®,(x, 1)) }'* for the above values
of M, and the dashed curve shows the exact solution. Both
the approach of the expected value to the true solution, and
the decrease in the variance are evident.

It is not surprising, in view of the bound (35), that the
rates at which E(u%,(x, £)) = o(x, £) and Var(u(x, 1)) -0
depend on the choice of ¢ and g in the relation ¢ = CM ~4.
In Fig. 5, we illustrate this by showing the average behavior
of the method with C=1, as in Fig. 4, but with ¢ =04. In
this case u’,(x, t) is much closer to v(x, ¢) for the same value
of M, but Var(u®,(x, 1)} is larger. The dashed curve again
shows the exact solution w(x, #). Each of the three pairs of
solid curves shows E(u°,(x, 1)} + {Var(u’,(x, 1))} for a
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FIG. 3. Behavior of the function-transport method for Problem 1 with
g=CM 7, with C=1 and ¢=0.2. Exact solution #(x, ¢} (dashed curve}
and numerical solution w$A{x, ¢} (solid curves} are shown at t=10.0 for
(A) M=2000, :¢=02187; (B) M =8000, ¢=0.1657, (C) M =32000,
£=0.1256; and (D) M = 128000, £ = 0.0952.
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given value of M = 2000, 8000, or 32000. We note that for
M = 2000 the curves for o{x, 1) and E{u,(x, £)) {not shown)
are indistinguishable. Because of the larger variance for a
given value of M, numerical solutions obtained with g = 0.4
are significantly more oscillatory than those obtained with
g = 0.2. The effect of using different values of g is illustrated
also in Fig. 6 for Problem 2. In this figure, we show the exact
solution (dashed curve) and the numerical solution (solid
curve} obtained using M = 32000 at t =0.1. For curve (A),
("=1and g=0.2, while for curve (B}, C=1and g=04. As
for Problem 1, the expected value is closer to the true solu-
tion and the variance is larger with ¢ = 0.4 than with g = 0.2
For this problem, with its very steep gradients, the solution
obtained with g = 0.4 is preferable.

We next discuss the performance of the method as vt — 0.
Consider formuias (24} and (28) which influence the bounds
on |E(uy(x, 1)) —v(x, t)| and Var(u,(x, 1}), respectively.
From these formulas, we see that the coefficients in these
bounds (e.g, D given by (30)) are very large when vz and
¢ are simultancously small. One might expect, therefore,

10.0 for (A) M = 2000 £=02187; (B) M = 8000, £ = 0.1657; (C} M = 32000,
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FIG. 5. Average behavior of the function-transport method for
Problem 1 with ¢ = CM ~¢ with C=1 and g =04. Exact solution v(x, 7}
{dashed curve} and E(u(x, r)) + {Var(a'y(x, 1) }'* (solid curves) are
shown at 1= 10.0 for (Ay M =2000, £ =0.0478; (B} M =8000, £ =0.0275;
and (C) M = 32000, ¢ =0.0158,



162

that increasingly large values of M might be needed to
obtain reasonable results from the method as vt — 0. That
this is not the case is illustrated in Fig. 7 which shows data
for times =001, 0.1, 1.0,.10.0 from the application of the
method to Problem 1 with v =0.001. In each frame are four
curves, one corresponding to each of these times. Since only
the combination v¢, and not v or ¢ separately, matters in
both the exact and numerical solutions, we can interpret
these curves as corresponding to a fixed time ¢ = 1.0 and to
values of v ranging from 10~? down to 10>, In Figs. 7a and
7¢c, we plot max, {(E(u%,{x, t))—v(x, 1))*} as a function of
M for each of these values of v. Similatly, in Figs. 7b and 7d,
we plot max, {Var(u,(x, 1))} as a function of M for each
value of v. The data used for Figs. 7a~b were obtained with
g=0.2 and C=1, those for Figs. 7c—d are based on g=0.4
and C=1, and M ranged from 500 to 256000 in both cases.
From Figs. 7b and d, we see that the variance decreases
as v decreases. From Figs.7a and ¢, we see that
max, { (E(u5,(x, 1)) ~v(x, 1))*} increases when v decreases
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from 1072 to 10~% but that the curves for v=10"" and
=105 are virtually indistinguishable. The quantity
max, {(E(us,(x, ()} —o(x, 1))’} changes most with v for
500 < M < 1000 and shows much less sensitivity to v for
values of M = 4000. Thus, the computational effort needed
to obtain a given level of accuracy is roughly the same for
all values of vas v — 0.

5. CONCLUSION

We have presented a new function-transport particle
method for diffusion problems with small diffusivity v. We
have resoived the dilemma of how much smoothing to
include in this type of method by proving that the method
converges as the number of particles M increases, and the
degree of smoothing, as measured by ¢, decreases, provided
that these limits are coupled in such a way that (Mz)~! - 0.
We have illustrated the performance of the method for the
special coupling e=CM 9, C=>0, 0 <g<1, and showed
that the method performs uniformiy well for all v small.

We have not made a systematic comparison of the
method with gradient-transport methods. Preliminary
results suggest the gradient method is superior for problems
with very steep transitions (such as Problem 2 above), but
that the function-transport method works better for
problems that are somewhat smoother {such as Problem 1).
The former is not surprising because the gradient method
concentrales its effort at the steep gradient, What is sur-
prising is that function-transport methods, which according
to conventional wisdom do not work at all, can outperform
the gradient mthod on some problems.

We are exploring the effect of incorporating the explicit
smoothing of the current method into gradient-transport
methods. Our hope is that the explicit smoothing will
increase the rate of convergence of gradient-transport
methods. In the combined method, a formula like Eq. (8)
would be used to approximate v (x, 7), and an approxima-
tion to ¢{x, ¢) would then be obtained by integration. Since
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the indefinite integral of our smoothing function ¢, is
expressible in terms of the complimentary error function,
this is straightforward to implement. If one-dimensional
studies of the smoothed gradient-transport method are
encouraging, we will explore the use of simitar smoothing in
the multi-dimensional methods for convection-diffusion
problems introduced by Anderson [1] and Fogeison [7].
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